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Abstract

Full account of the latent regression model for the National Assessment of Educational Progress

is given. The treatment includes derivation of the EM algorithm, Newton-Raphson method, and

the asymptotic standard errors. The paper also features the use of the adaptive Gauss-Hermite

numerical integration method as a basic tool to evaluate expectations necessary to perform the

parameter estimations.

Key words: Latent regression, EM algorithm, Newton-Raphson algorithm, Gauss-Hermite

quadrature, NAEP
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1 Introduction

Educational assessments such as the National Assessment of Educational Progress (NAEP)

and Trends in International Mathematics and Science Studies contain broad content frameworks

and consequently large item pools. Yet these assessments are governed by restrictions on the time

and, subsequently, the number of items each student is requested to respond to. An efficient way

to address this dilemma is to systematically distribute items among students in a so-called matrix

design. In a matrix design, a given student is only administered a certain randomly assigned

subset of items.

Not-so-pleasant implications of this matrix design are that only limited information is

available about a specific individual and that comparisons between students are complicated.

To further enhance the ability to produce the required set of estimates, this paper investigates

a method to address these issues in which a large collection of background variables is created

and responses corresponding to these variables are collected via several survey instruments. A

regression of student’s ability on these background variables is then incorporated into the existing

marginal item response theory (IRT) model to create the main object of interest in this paper, the

latent regression item response theory model. When only population subgroup relevant information

is the concern of the assessment, as is the case with NAEP, this approach has been found to be

satisfactory and became the workhorse of this sort of large scale assessments (Mislevy, 1984, 1985).

The structure of the paper is as follows. Some preliminary notes on mathematical notations

are followed by the detailed account of the latent regression item response theory model. The next

three sections present the usual way of parameter estimation via maximum likelihood method

coupled with an application of the successive approximation technique (EM algorithm). Special

emphasis to the adaptive Gauss-Hermite numerical integration method. There is a section about

the common population IRT model (mainly for comparison purposes) followed by a section about

the detailed account of the computation of asymptotic standard errors. Concrete derivations of

the Newton method is given along with a discussion about its implementability in the latent

regression framework complete the paper.

2 Notes on Notations

The definitions and notations introduced in this section are fairly standard in linear algebra.

Nevertheless, they are included here in an effort to make the paper self-contained. The interested
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reader may find Halmos (1974), Harville (1997), and Magnus and Neudecker (1999) useful for a

further study in linear algebra.

Tensor products of vectors are defined as

⊗K : Rn1 × · · · × RnK → Rn1 ⊗ · · · ⊗ RnK ,

(a1, . . . , aK) 7→ a1 ⊗ · · · ⊗ aK ,

where

(a1 ⊗ · · · ⊗ aK)i1...iK = (a1)i1 . . . (aK)iK .

As an example, observe the map,

Rn ⊗ Rn → Mn(R), (a⊗ b)ij = aibj .

A general tensor, by definition, is a linear combination of elements of the form a1 ⊗ · · · ⊗ aK . The

extension of the tensor product to matrices and higher order tensors follow the same idea (e.g.,

(A⊗B)ijkl = AijBkl, where A and B are ordinary square matrices). As a shorthand for the n-fold

tensor product,

a⊗n = a⊗ · · · ⊗ a.

The symmetric tensor product of two tensors is defined as

A⊗s B =
1
2
(A⊗B + B ⊗A).

The scalar product is a bilinear map,

〈〈 〉〉 : Rn × Rn → R, (a, b) 7→ 〈〈a b〉〉 :=
n∑

i=1

aibi.

It naturally extends to any tensor product,

〈〈 〉〉 : Rn1 ⊗ · · · ⊗ RnK × Rn1 ⊗ · · · ⊗ RnK → R,

(A,B) 7→ 〈〈A B〉〉 :=
∑

i1,...,iK

Ai1...iK Bi1...iK .

It will be convenient for the purposes of this paper to extend the scalar product for a specified set

of indices of a tensor. The result is going to be a tensor of type determined by the unused indices.

That is,

〈〈 〉〉I1...Ir,J1...Jr
: Rn1 ⊗ · · · ⊗ RnK × Rn1 ⊗ · · · ⊗ RnL → RN ,
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(A,B) 7→ 〈〈A B〉〉I1...Ir,J1...Jr
:=

∑
i1,...,ir

A...i1...ir...B...i1...ir...,

where the summation indices of A appear at the positions I1, . . . , Ir and the that of B appear

at the positions J1, . . . , Jr. Moreover, N =
QK

i=1

QL
j=1 ninj

nI1
...nIr nJ1

...nJr
. An example may illuminate the idea

better:

〈〈A B〉〉12,14 =
∑
i,j

Aij..Bi..j , that is (〈〈A B〉〉12,14)klmn =
∑
i,j

AijklBimnj .

Even the usual matrix multiplication can be expressed in this way:

Aa = 〈〈A a〉〉2,1 =
∑

i

A.iai ∈ Rn, A ∈ Mn(R), a ∈ Rn,

AB = 〈〈A B〉〉2,1 =
∑

i

A.iBi. ∈ Mn(R), A, B ∈ Mn(R).

The quadratic form is defined as,

〈〈 〉〉 : Rn ×Mn(R)× Rn → R, (a,A, b) 7→ 〈〈a A b〉〉 :=
n∑

i,j=1

aiAijbj ,

which can also be written as a scalar product of two tensors:

〈〈a A b〉〉 = 〈〈a⊗ b A〉〉.

3 Likelihood of Latent Regression

The marginal latent regression item response theory (MLR-IRT) model is given by the

log-likelihood (Mislevy, 1984, 1985; von Davier, Sinharay, Oranje, & Beaton, 2007),

L =
N∑

i=1

log
∫

RK

P (yi | θ)ϕ(θ; Γxi,Σ)dKθ. (1)

where

Li(θ) := P (yi | θ,B) =
J∏

j=1

P 3pl,pc(yij |θ, βj) (2)

is the likelihood of the response vector yi of student i given the ability θ ∈ RK (where K is

the number of dimensions or subscales) and item parameters B = (β1, . . . , βJ). The number of

response categories mj for item j splits the item pool into two disjoint subsets: dichotomous

items (mj = 2), and polytomous items (mj > 2). For dichotomous items βj = (aj , bj , cj) and

for polytomous ones βj = (aj , bj1, ..., bjmj ). The design vector qj ∈ {0, 1}K for item j is also

introduced so that qj,k = 1 if item j is associated with subscale k; otherwise qj,k = 0.
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The probability of the actual response of student i to item j as a function of θ ∈ RK is given

by

P 3pl(yij | θ, βj) =


cj + (1−cj)

1+e−aj(〈〈qj θ〉〉−bj)
, if yij = 1,

(1− cj)
(

1− 1

1+e−aj(〈〈qj θ〉〉−bj)

)
, if yij = 0,

(3)

for dichotomous items and by

P pc(yij | θ, βj) =
e

hP

v=1
aj(〈〈qj θ〉〉−bjv)

mj∑
u=1

e

uP

w=1
aj(〈〈qj θ〉〉−bjw)

, if yij = h ∈ {1, . . . ,mj}, (4)

for polytomous items (Birnbaum, 1968; Muraki, 1992).

The population distribution is multivariate normal

ϕ(θ; Γxi,Σ) =
1

(2π)k/2
√

det(Σ)
e−

1
2
〈〈θ−Γxi Σ−1 θ−Γxi〉〉. (5)

Here, xi ∈ RL is the vector of background variables, Γ ∈ MK,L(R) is the matrix of regression

coefficients, while Σ ∈ MK(R) is the covariance matrix of the subscales. Note, that while Σ is

common across the population, the mean Γxi is governed by the background variables and can be

different for each student. Also introduced is

N (Li) =
∫

RK

P (yi | θ)ϕ(θ; Γxi,Σ)dKθ, (6)

for the normalization of the likelihood Li.

4 Maximum Likelihood Solution for Latent Regression

Useful references for the calculus involved in the rest of the paper may be Harville (1997) and

Magnus and Neudecker (1999). The goal is to maximize the log-likelihood (1) with respect to Γ

and Σ assuming that item parameters are known. To this end, first compute the derivative of L

with respect to the matrix element γkl of Γ:

∂L

∂γkl
= −1

2

N∑
i=1

P (yi | θ)
N (Li)

∫
RK

∂
〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
∂γkl

ϕ(θ; Γxi,Σ)dKθ

= −1
2

N∑
i=1

∫
RK

∂
〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
∂γkl

dµi, (7)
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where µi is the probability measure for student i: dµi = P (yi|θ)
N (Li)

ϕ(θ; Γxi,Σ)dKθ. Now,

∂

∂γkl

〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
= −

〈〈
(0, . . . ,

(k)
x il, . . . , 0) Σ−1 θ − Γxi

〉〉
−
〈〈
θ − Γxi Σ−1 (0, . . . ,

(k)
x il, . . . , 0)

〉〉
= xil(Σ−1Γxi)k + (Γxi · Σ−1)kxil − xil(Σ−1θ)k − (θ · Σ−1)kxil. (8)

Here
(k)
x means that x appears at the kth position. a · B denotes the usual right action of matrix

B on the vector a:

(a ·B)k =
∑

r

arBrk.

Using (8), the equation ∂L
∂γkl

= 0 can be written as

N∑
i=1

xil(Σ−1Γxi)k + (Γxi · Σ−1)kxil =
N∑

i=1

xil(Σ−1θ̃i)k + (θ̃i · Σ−1)kxil (9)

which, using that Σ is symmetric, becomes

N∑
i=1

xil(Σ−1Γxi)k =
N∑

i=1

xil(Σ−1θ̃i)k. (10)

Here θ̃i is the expectation of θ for student i:

θ̃i :=
∫

RK

θdµi. (11)

Multiplying with Σ yields
N∑

i=1

xil(Γxi)k =
N∑

i=1

xilθ̃ik (12)

This is then rewritten as 〈〈 N∑
i=1

xi ⊗ xi Γt
〉〉

2,1
=

N∑
i=1

xi ⊗ θ̃i (13)

Therefore, after multiplying (13) by
(∑N

i=1 xi ⊗ xi

)−1
, the result is

Γt =

(
N∑

i=1

xi ⊗ xi

)−1( N∑
i=1

xi ⊗ θ̃i

)
. (14)

Note that this is an implicit equation, since for θ̃i the knowledge of Γ and Σ would be required.

5



The derivative of L with respect to the matrix element σkk′ of Σ is

∂L

∂σkk′
=

N∑
i=1

∫
RK

∂ det(Σ)−
1
2

∂σkk′
det(Σ)

1
2 dµi

−1
2

N∑
i=1

∫
RK

∂
〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
∂σkk′

dµi. (15)

To proceed, use the following computations.

det(Σ)
1
2
∂ det(Σ)−

1
2

∂σkk′
= −1

2
det(Σ)−1(2− δkk′)ξkk′ = −1

2
(2− δkk′)Σ−1

kk′ , (16)

where δkk′ = 1 if k = k′; otherwise δkk′ = 0. Also, ξ denotes the adjoint matrix of Σ.

The derivative of the quadratic form is computed using

∂Σ−1

∂σkk′
=

1
2
(δkk′ − 2)Σ−1(ek ⊗ ek′ + ek′ ⊗ ek)Σ−1 = (δkk′ − 2)(Σ−1 ⊗s Σ−1)kk′ , (17)

where for ek ∈ RK , ekκ = δkκ and

(Σ−1 ⊗s Σ−1)kk′ =
1
2
Σ−1(ek ⊗ ek′ + ek′ ⊗ ek)Σ−1.

Then,

∂
〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
∂σkk′

= (δkk′ − 2)
〈〈
θ − Γxi (Σ−1 ⊗s Σ−1)kk′ θ − Γxi

〉〉
, (18)

Using θ − Γxi = (θ − θ̃i) + (θ̃i − Γxi),

∂L

∂σkk′
= −1

2
(2− δkk′)

(
N∑

i=1

Σ−1
kk′

−
N∑

i=1

E
〈〈
θ − θ̃i (Σ−1 ⊗s Σ−1)kk′ θ − θ̃i

〉〉
−

N∑
i=1

〈〈
θ̃i − Γxi (Σ−1 ⊗s Σ−1)kk′ θ̃i − Γxi

〉〉)
. (19)

That is

(2− II)−1 ∂L

∂Σ
= −1

2

N∑
i=1

Σ−1

+
1
2

N∑
i=1

〈〈
Σ−1 ⊗s Σ−1 E

(
(θ − θ̃i)⊗ (θ − θ̃i)

) 〉〉
34

+
1
2

N∑
i=1

〈〈
Σ−1 ⊗s Σ−1 (θ̃i − Γxi)⊗ (θ̃i − Γxi)

〉〉
34

. (20)
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Setting ∂L
∂Σ = 0 and multiplying it with Σ⊗s Σ, the result is

Σ =
1
N

N∑
i=1

[
(θ̃i − Γxi)⊗ (θ̃i − Γxi) + E

(
(θ − θ̃i)⊗ (θ − θ̃i)

)]
. (21)

Here is introduced

Σ̌(i) := E
(
(θ − θ̃i)⊗ (θ − θ̃i)

)
=

∫
RK

(θ − θ̃i)⊗ (θ − θ̃i)
P (yi|θ)
N (Li)

ϕ(θ; Γxi,Σ)dKθ. (22)

5 Computing Expectations

To find the maximum place of the likelihood of the latent regression, several integrals need to

be computed: one for the normalization constant of individual’s likelihood

N (Li) =
∫

RK

P (yi | θ)ϕ(θ; Γxi,Σ)dKθ, (23)

another for the expectation of the latent trait

θ̃i :=
∫

RK

θ
P (yi|θ)
N (Li)

ϕ(θ; Γxi,Σ)dKθ, (24)

and one for the expectation of the variance of the latent trait

Σ̌(i) :=
∫

RK

(θ − θ̃i)⊗ (θ − θ̃i)
P (yi|θ)
N (Li)

ϕ(θ; Γxi,Σ)dKθ. (25)

The computations in NAEP are carried out using numerical quadrature for K < 3 and Laplace

approximation for K > 2.

The detailed account of adaptive numerical integration is given in (Antal & Oranje, 2007),

here we only provide a short description of the major tools. In normal population marginal IRT

the implemented numerical integration procedures aim to compute multidimensional integrals of

the form

I :=
∫

RK

f(x)e−〈〈x x〉〉dKx, (26)

where f is a smooth function. The rectangle rule approximates the integral by

I ∼=
∑

q∈QP
f(q)e−〈〈q q〉〉∆q, (27)
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where QP = {q1, . . . , qQ}K with qi = qmin + qmax−qmin

Q−1 (i−1), (i = 1, . . . , Q). ∆q =
(

qmax−qmin

Q−1

)K
.

An example would be [−4, 4] or [−5, 5] with Q = 41.

Gaussian quadrature (Stoer & Bulirsch, 2002, pp. 171–180) provides a tool that makes it

possible to compute higher dimensional integrals without compromising computational precision.

With the Rth Gauss-Hermite quadrature, the integral is approximated as

I ∼=
∑

q∈QPK
GHR

f(q)wq, (28)

where QPGHR
is the set of the zeros of the Rth Hermite polynomial HR and QPK

GHR
is the Kth

Cartesian power of QPGHR
. The weights are given by wq = wq1wq2 . . . wqK , where

wqi =
2R−1R!

√
π

R2HR−1(qi)2
. (29)

If the number of items is relatively large, it is possible that the response likelihood P (yi | θ, β)

has a sharp peak at a location depending on the item parameters β and the item responses yi. It

is then possible that an integration technique based on finite number of function evaluations fails

to sufficiently capture the behavior of the response likelihood. While this is very uncommon in

NAEP, where the number of items per subscale rarely exceeds 10, this issue is addressed here for

the sake of completeness.1 In addition, it is expected that a method more cognizant of the actual

behavior of the response likelihood may be computationally more efficient even for tamer response

likelihoods.

One way of taking the peak of the response likelihood into consideration finds the modal

multivariate normal approximation

P (yi | θ, β) ∼= ϕ(θ; θm
i ,Σm

i ), (30)

where θm
i is the mode of P (yi | θ, β) and Σm

i is the modal covariance matrix of P (yi | θ, β). More

precisely, θm
i is obtained as the solution of

∂P (yi | θ, β)
∂θ

= 0, (θ =?), (31)

and the modal covariance is defined by

Σm
i =

(
−∂2 log P (yi | θ, β)

∂θ2

)−1
∣∣∣∣∣
θ=θm

i

. (32)
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For an arbitrary smooth function g(θ), proceed with the integration as follows:

E(g)i =
∫

RK

g(θ)
P (yi | θ, β)
N (Li)

ϕ(θ; Γxi,Σ)dKθ

=
∫

RK

g(θ)
P (yi | θ, β)

N (Li)ϕ(θ, θm
i ,Σm

i )
ϕ(θ; θm

i ,Σm
i )ϕ(θ; Γxi,Σ)dKθ

=
∫

RK

g(θ)
P (yi | θ, β)

N (Li)ϕ(θ; θm
i ,Σm

i )
Ciϕ(θ; θp

i ,Σ
p
i )d

Kθ,

where

Σp
i =

(
Σ−1 + (Σm

i )−1
)−1

, (33)

θp
i = Σp

i (Σ
−1Γxi + (Σm

i )−1θm
i ), (34)

and

Ci =

√
|Σp

i |
(2π)K/2

√
|Σm

i ||Σ|
. (35)

Then, one finds the Cholesky decomposition TiT
t
i = 2Σp

i and performs the change of variables

z = T−1
i (θ − θp

i ), θ = Tiz + θp
i (36)

to obtain the Gauss-Hermite rule

E(g)i
∼= Ci

∑
q∈QPK

GHR

g(Tiq + θp
i )

P (yi|Tiq + θp
i , β)

N (Li)ϕ(Tiq + θp
i , θ

m
i ,Σm

i )
wq. (37)

When the approximation (30) is good, then the function P (yi | θ,β)
ϕ(θ;θm

i ,Σm
i ) is approximately constant in

the range where the normal integration weight ϕ(θ; θp
i ,Σ

p
i ) is not negligible.

Because this computation uses additional information about the integrand (i.e., the method

adapts itself to the integrand), the technique is sometimes referred to as adaptive numerical

integration.

6 EM Algorithm

The previous two sections presented five computational steps towards maximizing the

likelihood (1) in terms of the latent regression coefficients Γ and Σ—(14), (21), and three

expectations (23, (24), and (25). All of these formulae are implicit though, as they depend

on parameters to be estimated. One way of solving this system of integral equations is to

construct an iterative scheme out of the the five building blocks. This is usually termed as an

expectation-maximization (EM) algorithm; in this case, however, the maximization steps (14) and
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(21) are trivial. This particular solution can be thought of as a successive approximation scheme.

The parameters gain an extra index to indicate the iteration status. That is, the initial value for Γ

is Γ(0). By choosing Γ(0) = 0 and Σ(0) = IdK it is possible to compute the expectations as follows

N (Li)(0) =
∫

RK

P (yi | θ)ϕ(θ; Γ(0)xi,Σ(0))dKθ, (38)

θ̃
(0)
i :=

∫
RK

θ
P (yi|θ)
N (Li)(0)

ϕ(θ; Γ(0)xi,Σ(0))dKθ, (39)

and

Var(θi)(0) =
∫

RK

(θ − θ̃
(0)
i )⊗ (θ − θ̃

(0)
i )

P (yi|θ)
N (Li)(0)

ϕ(θ; Γ(0)xi,Σ(0))dKθ. (40)

Using these initial estimates, it is now possible to obtain updates for Γ and Σ via the so-called

M-steps (14) and (21).

The iteration stops when the prescribed convergence threshold is reached.

7 Common Population Estimation

The common population approach aims to maximize the log-likelihood (1) with respect to

the population mean and and population covariance without the regression effect. That is, one

assumes that the log likelihood is of the form

L =
N∑

i=1

log
∫

RK

P (yi | θ)ϕ(θ;µ,Σ)dKθ. (41)

For the derivatives of L with respect to the population parameters µ and Σ,

∂L

∂µ
= −1

2

N∑
i=1

1
N (Li)

∫
RK

P (yi | θ)
∂
〈〈
θ − µ Σ−1 θ − µ

〉〉
∂µ

ϕ(θ;µ,Σ)dKθ

= −1
2

N∑
i=1

1
N (Li)

∫
RK

P (yi | θ)Σ−1(θ − µ)ϕ(θ;µ,Σ)dKθ. (42)

Setting ∂L
∂µ = 0, the implicit equation for the estimate of µ is:

µ̂ =
1
N

N∑
i=1

∫
RK

θ
P (yi | θ)
N (Li)

ϕ(θ; µ̂, Σ̂)dKθ. (43)

The computation for the derivative with respect to the population covariance is almost identical to

the corresponding computation performed for the M-step. It yields the following implicit equation

for the covariance estimate

Σ̂ =
1
N

N∑
i=1

∫
RK

(θ − µ̂)⊗ (θ − µ̂)
P (yi | θ)
N (Li)

ϕ(θ; µ̂, Σ̂)dKθ. (44)
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8 Standard Error

Assume asymptotic consistency in that the estimates follow a normal distribution around the

true value, with covariance being the inverse of the information matrix of the likelihood, so that

I(L) = −


∂2L
∂Γ2

∂2L
∂Γ∂Σ

∂2L
∂Σ∂Γ

∂2L
∂Σ2

 , Cov(Γ̂, Σ̂) = I(L)−1. (45)

Then compute the standard error. Recall that the first derivative of L with respect to Γ is given

by
∂L

∂γkl
= −

N∑
i=1

∫
RK

P (yi|θ)
N (Li)

xil(Σ−1(Γxi − θ))kϕ(θ; Γxi,Σ)dKθ. (46)

Then,

∂2L

∂γk′l′∂γkl

=
N∑

i=1

∫
RK

1
N (Li)

∂N (Li)
∂γk′l′

xil(Σ−1(Γxi − θ))kdµi

−
N∑

i=1

∫
RK

xil
∂(Σ−1(Γxi − θ))k

∂γk′l′
dµi

−
N∑

i=1

∫
RK

P (yi|θ)
N (Li)

xil(Σ−1(Γxi − θ))k
∂ϕ(θ; Γxi,Σ)

∂γk′l′
dKθ.

Performing the prescribed differentiations yields

∂2L

∂γk′l′∂γkl
=

N∑
i=1

K∑
κ,κ′=1

xilxil′Σ−1
kκ Σ−1

k′κ′(Γxi − θ̃i)κ(Γxi − θ̃i)κ′

−
N∑

i=1

xilxil′Σ−1
kk′

−
N∑

i=1

K∑
κ,κ′=1

xilxil′Σ−1
kκ Σ−1

k′κ′E ((Γxi − θ)κ(Γxi − θ)κ′) . (47)

Finally,

∂2L

∂γk′l′∂γkl
= −

N∑
i=1

(xi ⊗ xi ⊗ Σ−1)ll′kk′

−
N∑

i=1

K∑
κ,κ′=1

(xi ⊗ xi ⊗ Σ̌(i) ⊗ Σ−1 ⊗ Σ−1)ll′κκ′kκk′κ′ . (48)
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The terms ∂2L
∂σk′k′′∂γkl

are computed as follows:

∂2L

∂σk′k′′∂γkl

=
N∑

i=1

∫
RK

1
N (Li)

∂N (Li)
∂σk′k′′

xil(Σ−1(Γxi − θ))kdµi (49)

−
N∑

i=1

∫
RK

xil
∂(Σ−1(Γxi − θ))k

∂σk′k′′
dµi (50)

−
N∑

i=1

∫
RK

P (yi|θ)
N (Li)

xil(Σ−1(Γxi − θ))k
∂ϕ(θ; Γxi,Σ)

∂σk′k′′
dKθ. (51)

First,

1
N (Li)

∂N (Li)
∂σk′k′′

=
∫

RK

P (yi | θ)
N (Li)

∂ϕ(θ; Γxi,Σ)
∂σk′k′′

dKθ, (52)

that is

(49) =
N∑

i=1

xil(Σ−1(Γxi − θ̃i))k

∫
RK

P (yi | θ)
N (Li)

∂ϕ(θ; Γxi,Σ)
∂σk′k′′

dKθ. (53)

Then, the contribution of (50) is computed:

(50) = −1
2

N∑
i=1

xil(δk′k′′ − 2)
(
(Σ−1 ⊗s Σ−1)k′k′′(Γxi − θ̃i)

)
k

(54)

Furthermore,

(51) = −
N∑

i=1

∫
RK

P (yi|θ)
N (Li)

xil(Σ−1(Γxi − θ̃i))k
∂ϕ(θ; Γxi,Σ)

∂σk′k′′
dKθ

−
N∑

i=1

∫
RK

P (yi|θ)
N (Li)

xil(Σ−1(θ − θ̃i))k
∂ϕ(θ; Γxi,Σ)

∂σk′k′′
dKθ, (55)

where the first summand in (55) cancels out the contribution of (53).

From previous computations,

∂ϕ(θ; Γxi,Σ)
∂σk′k′′

= −1
2
(2− δk′k′′)Σ−1

k′k′′ϕ(θ; Γxi,Σ)

+
1
2
(2− δk′k′′)

〈〈
Γxi − θ̃i (Σ−1 ⊗s Σ−1)k′k′′ Γxi − θ̃i

〉〉
ϕ(θ; Γxi,Σ)

+
1
2
(2− δk′k′′)

〈〈
θ − θ̃i (Σ−1 ⊗s Σ−1)k′k′′ θ − θ̃i

〉〉
ϕ(θ; Γxi,Σ)

−(2− δk′k′′)
〈〈
θ − θ̃i (Σ−1 ⊗s Σ−1)k′k′′ θ̃i − Γxi

〉〉
ϕ(θ; Γxi,Σ). (56)
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Finally,

∂2L

∂σk′k′′∂γkl

=
1
2
(δk′k′′ − 2)

(
−

N∑
i=1

xil

(
(Σ−1 ⊗s Σ−1)k′k′′(Γxi − θ̃i)

)
k

−
N∑

i=1

∫
RK

xil(Σ−1(θ − θ̃i))k

〈〈
(θ − θ̃i)⊗ (θ − θ̃i) (Σ−1 ⊗s Σ−1)k′k′′

〉〉
dµi

+2
N∑

i=1

∫
RK

xil(Σ−1(θ − θ̃i))k

〈〈
(θ − θ̃i)⊗ (Γxi − θ̃i) (Σ−1 ⊗s Σ−1)k′k′′

〉〉
dµi

)
. (57)

The terms ∂2L
∂σκκ′∂σkk′

are computed using (19) in several steps as follows. First, recall the

derivatives for Σ−1 are
∂Σ−1

kk′

∂σκκ′
= −(2− δκκ′)(Σ−1 ⊗s Σ−1)κκ′kk′ . (58)

For (Σ−1 ⊗s Σ−1), they are

∂(Σ−1 ⊗s Σ−1)kk′rr′

∂σκκ′
= −(2− δκκ′)(Σ−1 ⊗s Σ−1 ⊗s Σ−1)κκ′kk′rr′ . (59)

Also, for the normalizations N (Li)

1
N (Li)

∂N (Li)
∂σκκ′

= −1
2
(2− δκκ′)Σ−1

κκ′ −
1
2

∫
RK

∂
〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
∂σκκ′

dµi

= −1
2
(2− δκκ′)Σ−1

κκ′ +
1
2
(2− δκκ′)

〈〈
Σ(i) (Σ−1 ⊗s Σ−1)κκ′

〉〉
. (60)

and θ̃i

∂θ̃i

∂σκκ′
=

∫
RK

θ
∂ϕ(θ; Γxi,Σ)

∂σκκ′

1
ϕ(θ; Γxi,Σ)

dµi −
∫

RK

θ
1

N (Li)
∂N (Li)
∂σκκ′

dµi

=
∫

RK

(θ − θ̃i)
∂ϕ(θ; Γxi,Σ)

∂σκκ′

1
ϕ(θ; Γxi,Σ)

dµi

= −1
2

∫
RK

(θ − θ̃i)
∂
〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
∂σκκ′

dµi

=
1
2
(2− δκκ′)

[〈〈
E
(
(θ − θ̃i)⊗3

)
(Σ−1 ⊗s Σ−1)κκ′

〉〉
23

+2
〈〈
Σ̌(i) ⊗ (θ̃i − Γxi) (Σ−1 ⊗s Σ−1)κκ′

〉〉
23

]
. (61)
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Then,

∂E((θ − θ̃i)⊗ (θ − θ̃i))
∂σκκ′

= 2
∫

RK

(
θ − ∂θ̃i

∂σκκ′

)
⊗s (θ − θ̃i)dµi

−
∫

RK

(θ − θ̃i)⊗ (θ − θ̃i)
1

N (Li)
∂N (Li)
∂σκκ′

dµi

+
∫

RK

(θ − θ̃i)⊗ (θ − θ̃i)
∂ϕ(θ; Γxi,Σ)

∂σκκ′

1
ϕ(θ; Γxi,Σ)

dµi.

This, using (
θ − ∂θ̃i

∂σκκ′

)
⊗ (θ − θ̃i) = (θ − θ̃i)⊗2 +

(
θ̃i −

∂θ̃i

∂σκκ′

)
⊗ (θ − θ̃i),

yields

∂E((θ − θ̃i)⊗ (θ − θ̃i))
∂σκκ′

= Σ̌(i) +
∫

RK

(
(θ − θ̃i)⊗2 − Σ̌(i)

) ∂ϕ(θ; Γxi,Σ)
∂σκκ′

1
ϕ(θ; Γxi,Σ)

dµi

= Σ̌(i) − 1
2

∫
RK

(
(θ − θ̃i)⊗2 − Σ̌(i)

) ∂
〈〈
θ − Γxi Σ−1 θ − Γxi

〉〉
∂σκκ′

dµi

= Σ̌(i) +
1
2
(2− δκκ′)

[〈〈
E
(
(θ − θ̃)⊗4

i

)
− Σ̌(i)⊗2 (Σ−1 ⊗s Σ−1)κκ′

〉〉
34

+
〈〈
E
(
(θ − θ̃)⊗3

i

)
⊗ (θ̃i − Γxi) (Σ−1 ⊗s Σ−1)κκ′

〉〉
34

+
〈〈
E
(
(θ − θ̃)⊗2

i ⊗ (θ̃i − Γxi)⊗ (θ − θ̃)i

)
(Σ−1 ⊗s Σ−1)κκ′

〉〉
34

]
. (62)

Finally, putting all the above together yields

∂2L

∂σκκ′∂σkk′

= −N

2
(2− δkk′)(2− δκκ′)(Σ−1 ⊗s Σ−1)kk′κκ′

+
1
2
(2− δkk′)

N∑
i=1

〈〈∂E((θ − θ̃i)⊗ (θ − θ̃i))
∂σκκ′

(Σ−1 ⊗s Σ−1)kk′
〉〉

−1
2
(2− δkk′)(2− δκκ′)

N∑
i=1

〈〈
Σ̌(i) (Σ−1 ⊗s Σ−1 ⊗s Σ−1)kk′κκ′

〉〉
+(2− δkk′)

N∑
i=1

〈〈( ∂θ̃i

∂σκκ′
− Γxi

)
⊗s (θ̃i − Γxi) (Σ−1 ⊗s Σ−1)kk′

〉〉
−1

2
(2− δkk′)(2− δκκ′)

N∑
i=1

〈〈
(θ̃i − Γxi)⊗2 (Σ−1 ⊗s Σ−1 ⊗s Σ−1)kk′κκ′

〉〉
. (63)
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9 Newton Method

9.1 Basic Computations

This section derives the formulae for the estimation based on Newton’s method. First define

F : MK,L(R)×MK(R) → MK,L(R)×MK(R), F = (FΓ, FΣ),

FΓ : MK,L(R)×MK(R) → MK,L(R),

FΣ : MK,L(R)×MK(R) → MK(R),

where

FΓ(Γ,Σ) = Γt −

(
N∑

i=1

xi ⊗ xi

)−1( N∑
i=1

xi ⊗ θ̃i

)
, (64)

FΣ(Γ,Σ) = Σ− 1
N

N∑
i=1

[
(θ̃i − Γxi)⊗ (θ̃i − Γxi) + Σ̌(i)

]
. (65)

By construction, the equation

F (Γ,Σ) = 0, ((Γ,Σ) =?) (66)

is equivalent to the system of equations presented in (14) and in (21). The Newton method for

(66) yields the following scheme for the iterative estimates (Γ(n),Σ(n)):

(Γ(n+1),Σ(n+1)) = (Γ(n),Σ(n))−DF [Γ(n),Σ(n)]−1F (Γ(n),Σ(n)). (67)

The computation of the derivative

DF =


∂FΓ
∂Γ

∂FΓ
∂Σ

∂FΣ
∂Γ

∂FΣ
∂Σ

 (68)

is as follows. First,

∂FΓ

∂γkl
=

∂Γt

∂γkl
−

(
N∑

i=1

xi ⊗ xi

)−1( N∑
i=1

xi ⊗
∂θ̃i

∂γkl

)

=
∂Γt

∂γkl
−

(
N∑

i=1

xi ⊗ xi

)−1 N∑
i=1

K∑
κ=1

xi ⊗ (xi ⊗ Σ−1 ⊗ Σ̌(i))lkκκ.

Then,

∂FΓ

∂σkk′
= −

(
N∑

i=1

xi ⊗ xi

)−1( N∑
i=1

xi ⊗
∂θ̃i

∂σkk′

)
. (69)
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The term ∂θ̃i
∂σkk′

is computed in (61). Next,

∂FΣ

∂γkl
= − 2

N

N∑
i=1

[(
∂θ̃i

∂γkl
− ∂Γ

∂γkl
xi

)
⊗s (θ̃i − Γxi) + E

((
θ − ∂θ̃i

∂γkl

)
⊗s (θ − θ̃i)

)]

= − 2
N

N∑
i=1

[(
∂θ̃i

∂γkl
− ∂Γ

∂γkl
xi

)
⊗s (θ̃i − Γxi) +

1
2
Σ̌(i)

]
. (70)

Finally,

∂FΣ

∂σkk′
=

∂Σ
∂σkk′

− 2
N

N∑
i=1

[(
∂θ̃i

∂σkk′
− Γxi

)
⊗s (θ̃i − Γxi) +

1
2
Σ̌(i)

]
. (71)

9.2 Notes on Implementation

From the actual forms of the second derivatives—most notably (63)—it is clear that direct

application should be done very carefully. The number of function evaluations in any numerical

integration scheme with Nqp quadrature points in Ndim dimensions (Ndim = number of subscales)

for the expectation

E
(
(θ − θ̃)⊗4

i

)
is

N4
dimNNdim

qp ,

which is 54 · 125 = 155, 520, 000 for a reasonable choice of five dimensions and 12 quadrature

points. Now, there is a relatively high degree of symmetry in the computation that can be used

to decrease this number significantly. The point is that a careful analysis should be performed to

find the best way to use this symmetry and to determine if it brings down the number of function

evaluations to a manageable range.

With the Newton method, the computation might not worth the effort, since there already is

a well-functioning (even if slow) estimation method (the EM-algorithm). For the standard error

(where the exact same computations are needed to be performed), the effort is justified only if the

added correction may significantly alter the existing approximate estimator.

In both cases, the discussions are postponed for a future research study.

10 Conclusion

This rather technical paper presented the fundamental computations underlying the marginal

maximum likelihood estimation of the latent regression model as used in NAEP. Special emphasis
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was given to the numerical integration method, which, while an artifact of the calculation, can play

a decisive role in the manageability of the computations required for the parameter estimation.

While the computations of the formulae for the asymptotic standard error and that of the

second derivatives of the likelihood appearing in the Newton method pose no theoretical problems,

practical implementations may encounter serious difficulties. This is mainly due to the appearance

of the expectations of the third and fourth order tensors (θ − θ̃)⊗3 and (θ − θ̃)⊗4, since the

integration should be performed for each matrix element separately. While the existing symmetry

may be used to reduce the computational burden, a practically useful way is yet to be found.

Another direction for future study could be the comparison of the theoretical standard error

formulae to both simulation study empirical standard error (mainly to check appropriateness of

asymptotic approximation) and to the existing NAEP standard error (to ensure consistency of

practice with theory).
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Notes

1 Note, that, in general, the more items, the sharper is the peak.
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